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The changes of surface stress in a deep boundary layer passing from a surface of
one roughness to another of different roughness are described fairly accurately
by theories that assume self-preserving development of the flow modifications.
It has been shown that the dynamical conditions for self-preserving flow can be
satisfied if the change in friction velocity is small and if log ly/z, is large (I, is the
depth of the modified flow and z, is the roughness length of the surface). In this
paperitis shown that, if the change of friction velocity is not small, the dynamical
conditions can be satisfied to a good approximation over considerable fetches if
log ly/#, is large. The flow modification is then locally self-preserving, that is, the
fields of mean velocity and turbulence are in a moving equilibrium but one which
changes very slowly with fetch and depends on the ratio of the initial to the
current friction velocity. In the limit of a very large increase in friction velocity,
the moving equilibrium is essentially that of a boundary layer developing in a
non-turbulent free stream. Equations describing the flow development are
derived for all changes of friction velocity, and the form of the velocity changes
is discussed. For large increases of friction velocity, the depth of the modified
layer is substantially less than would be expected from the theories of Elliott and
of Panofsky & Townsend.

1. Introduction

The changes in a turbulent boundary layer that passes from one surface to
another of different roughness have been the subject of several experimental and
theoretical investigations in recent years. The theories of Elliott (1958) and of
Panofsky & Townsend (1964), which describe the observational material fairly
well, assume self-preserving development of the flow modification induced by the
change of surface, and it has been shown (Townsend 1965a) that the develop-
ment is consistent with the Reynolds equations for mean flow momentum and
turbulent energy if (i) the change in friction velocity is small, and (ii) log{,/z, is
large (I, is the depth of the modified flow and 2, is the roughness length). In
meteorological situations, the change of roughness may be so large that the first
condition is not satisfied and then the validity of the predictions may be queried.
If the flow takes place from a very smooth to a very rough surface, the modified
flow will resemble that in a turbulent boundary layer growing on the rough
surface with a free stream of constant velocity, and it seems likely to be self-
preserving. For less violent changes of surface or for a change from a rough to
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a smooth surface, the possibility of self-preserving development is not evident,
but it will be shown that the development is almost self-preserving whatever
the change of friction velocity.

2. Self-preserving forms for the flow modification

Consider a deep boundary layer, with zero longitudinal pressure gradient,
flowing in the direction of the Ox axis. At x = 0, the surface roughness-length
changes from its upstream value of z, to the downstream value, z,. The notation
and co-ordinates are those used in the earlier work, i.e.

Ox is in the wind direction,
2, is the roughness-length for z < 0,
M is the roughness-length for x > 0,

M = log 2/,

Ui(z)  is the mean velocity at height z for z < 0,

U(z,z) is the mean velocity at (z, 2),

&(x,z) is an approximation to the net displacement of the streamline through

(@,2),
Uy is the friction velocity for z < 0,
To is the surface stress for x > 0,
Uy, v, are scales of velocity at fetch «,
lo is a scale of length at fetch z,
7 =2/l
k is the Karman constant, nearly 0-41.

Upstream of the change of roughness, the Reynolds stress is nearly indepen-
dent of height with a kinematic value of %, and the velocity distribution is

Ui = (uy/k)log (2/2), (2.1)

where the suffix 1 indicates that the quantity refers to conditions upstream of
the change of roughness. The suffix 0 refers to conditions downstream of the
change of roughness but u, is used for the local velocity scale and nof for the local
friction velocity.

In the earlier paper (Townsend 1965a, to be called I), the velocity field U(x, z)
was defined using a distribution function V(z,z) and the equations,

U = U, + V —u, )/ (kz), (2.2)
8(z) = —ukl(log lof2y — Cy) f 0 V(') d, (2.3)
Cy=— f 0°° V(2)log 2/l,dz / 0°° V(z)dz, (2.4)

where [, is a measure of the depth of the region of modified flow, and U is the
upstream distribution of velocity. In I, ¥ and § were identified as the velocity
change along a streamline of the mean flow distant z from the surface for negative
z, and the net displacement of that streamline, but it was not made clear that
they are approximations that are good only in the outer part of the flow. The
point is of importance for the extension of the self-preserving theory to flows
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with large changes of roughness, and the following treatment may be clearer than
the original in 1.
The actual streamline displacement in the flow, 4, is given by

2z z+40z
f Uy(z')dz' = f U(z')dz, (2.5)
0 0
or, if §,/z is small (an assumption to be confirmed later), by
8,U(z) = —fz(U—Ul)dz’ (2.6)
0
with a fractional error of order d,/z. Substituting for (U — U,) from equation (2.2),
Ty g — _s 1 38@{]
fo [V(z) = ]dz = —4, A logz1 ot | (2.7
After an integration by parts and use of equation (2.3), we obtain
z & kV 2
0, [1ng—1—5+u—1] = 8[logz—1—00+0’0(z)], (2.8)
where Cylz) = —fz V(z’)log;— dz’/fz V(z')de
0 0 0

and so, for |C; — O(z)| < logz/z,,
(8, 3)/8, = {82 = kV uy = Cy+ Co(@} log 2f2,). (2.9)
The distribution function must approach zero for large values of 2/l, and, for
small values, it must conform with the logarithmic distribution of velocity in
the equilibrium layer, U = (rd/k)logz oo (2.10)
The last is possible if
V = (uy/k) log z/l,+ ] (2.11)

for small 2/l,, where C is a constant of order one depending on the choice of ,.
It is then easy to show that the logarithmic forms are consistent with the defining
equations (2.2-4) only if

78 =y + [ 1+ {log (fo/20) = M ~ Co} ] (2.12)
and uofuy = — M{log (ly/ze) — C + 1}, (2.13)
where M = logz/z,. The terms in the numerator on the right of (2.9) may now

be estimated. Inside the equilibrium layer, the form (2.11) is valid and may be
used to show that

Cy(z) = —logz/l,,
0z = Mlogz[ly[{log (ly/z,) — M }log Iy/z] 1 (2.14)
kVju, ~» — M(logz[ly/logly] z,.
If 2/l is very small, none of these is necessarily small compared with log z/z; and

¢ is not necessarily a good approximation to 48, but, near the outer edge of the
17 Fluid Mech. 26
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equilibrium layer and generally in the modified flow where 2/l is not too small,
Colz) = 0(1),
8]z = OLM{(log(ly/z0) — M) log lofze} 1, | (2.15)
kV [uy = O[M [log (Iy/2,)]-

For positive M, the matching relation (2.12) shows that u,is negative and it may
not exceed #, in magnitude if the surface stress remains positive. Then log[/z,
is greater than M and the three terms of the numerator are all small compared
with logz/z, = log (2/ly) +1og (ly/2e) — M if logly/z, is large and z/ly is not too
small. For negative M, log z/z, is certainly more than — M, and we reach the same
conclusion. It follows that (8, — 8)/d, is of order logly/z, or smaller in the outer
part of the modified flow, whatever the value of the change-of-roughness para-
meter M, § defined by (2.3) is therefore a good approximation to the actual dis-
placement of the streamlines and is always moderately small compared with z.
Then equation (2.2) shows that V differs from the true change of velocity along
the streamline by an amount of order u,/k(log,/2,)~2, and mean flow accelera-
tions in the outer flow can be found using V. In the equilibrium layer, where 2/l
may be very small, ¢ is not a good approximation to the streamline displacement
and V is not a good approximation to the velocity change, but here the nature of
the flow is determined by the local surface stress and is substantially unaffected
by the flow acceleration. In this region, V and ¢ are merely convenient functions
for describing the flow, convenient because they approximate closely to the
velocity change and the streamline displacement where the flow acceleration
matters, outside the equilibrium layer. It may be mentioned that the expressions
for the added momentum flux in §3 of I do not depend at all on the correspond-
ence between V and & and the velocity change and streamline displacement.
We now introduce the self-preserving form for the change of velocity,

V = (wo/E) f(2[l), (2.16)
where w,, [, are functions of z only. For self-preserving development, all the mean
values that describe the flow modification must be expressible in similar self-
preserving forms with the same length-scale I,. The stress modification should
have the form, 7~ = (ro—ud) Fefly) (2.17)
where F(z/l;) approaches one for small z/], and is zero for large values of z/l,.
Other quantities are the turbulent energy 1¢?, the divergence of the transverse
flux of turbulent energy &(pw+ 1q*w)/éz, and the rate of dissipation of turbulent
energy by viscosity e.

o Te— U
=i =~ GQe/), l
1
a 2
5 PO+ 1) = T2 D(e/L), (2.18)
0

e—ud|(k2) = {(r§ —ud)[k2} B(z[ly),

in which. the scales have been chosen so that the values appropriate to an equi-
librium layer can be assumed for small values of z/,.
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3. Possibility of self-preserving development

The basis of self-preserving development is a moving equilibrium in which the
various processes of turbulent transport and eddy interactions combine to
produce flow structures which at all stages are similar in form. The exact forms
depend on the dynamics of the flow which is partially described by the Reynolds
equation for the mean flow momentum,

oU oU  or
U—az-l' W‘E = a,

and by the Reynolds equation for the turbulent kinetic energy,

0
+ o (p+ hgPw) +€ = 0.

._1'___|_ a

0z oxr

1,2 1
UL LTV

Consider first the result of substituting the self-preserving forms for the velocity
change and the stress change, (2.16) and (2.17), in the momentum equation. The
purpose is to assess the possibility of self-preserving development and so there
is no need to consider the low for small values of z/l,. This part of the flow is an
equilibrium layer where production and dissipation of turbulent energy are so
intense that mean velocity is described by the logarithmic ‘law of the wall’, and
fulfilment of the matching conditions (2.11), (2.12), (2.13) is enough to make
self-preserving flow a dynamical possibility. Outside the equilibrium layer, the
adjustment time of the turbulent motion is appreciable and advection of
momentum and energy have an effect in the outer region which occupies perhaps
four-fifths of the whole region of modified flow. Supposing log /2, to be large, the
velocity change V is small compared with the local velocity and terms quadratic
in ¥V may be omitted. The result of the substitution is then

du, uy dl u dl —u?
wlog = |0 p= 0oy |+ 5 g G- el s [ pag| = Do,

" e

where 9 = z/l; and primes denote differentiation with respect to . From equation
(2.13), the ratio of duy/dx to u,/l,dl,/dx is

o duy _

_ _ 1
" (logly/zp—C +1)

which is small, and log z/2; is much larger than one in the outer region. To the
approximation of large log/,/z,, the momentum equation is

— (loglo/zg — M) uyuo(dlo/dz) nf’ = k*(1o—ul) F” (3.2)
and, after using the relations (2.12) and (2.13), it is

_(logly/zg— M) (logly/zy—C +1) dlo
2(loglyfzo—C+1)—M

nf = k2F, (3.3)

17-2
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If self-preserving development is consistent with the momentum equation,
the coefficient of 77f” in (3.3) must be independent of z. Integration over all 5 gives

dly (logly/zo— M) (log ly/zy— C + 1)
dx 2(logly/zy—-C+1)—M

where L = —f mf(ﬂ)d%
0

= kYL, (3.4)

since F(0) =1 by definition. If [; satisfies this development equation, the
momentum equation reduces to the non-dimensional, self-preserving form

nf' =—5LF (3.5)

and it might appear that self-preserving development is possible if log/,/z, is
large without qualification on the change in friction velocity. For very large
negative values of M, the stress ratio 7,/u} is large and the flow over the rougher
downstream surface must resemble closely a turbulent boundary layer initiated
at # = 0 with a free-stream velocity equal to the current value of U(l,). The
nature of flow with an almost non-turbulent ambient flow is very different from
the perturbation type flow for small values of M, and the boundary-layer flow
must have different distribution functions from the perturbation flow. In these
circumstances, it is not surprising that the question of self-preserving develop-
ment for moderate values of u,/u, is not simple.

In a turbulent flow, the mean flow and the turbulent motion interact, the
Reynolds stresses accelerating the mean flow and the turbulent motion deriving
its energy from the working of the mean flow against the Reynolds stresses. The
Reynolds momentum equation describes the first of the processes and it has now
been shown that a self-preserving velocity change is consistent with a self-
preserving change of Reynolds stresses. To show that the self-preserving stress
change can arise from the interaction between the mean flow and the turbulence,
it is necessary to look at the energy equation. With the self-preserving distribu-
tions of (2.18) and to the approximation of large logl,/z,, the energy equation is

—-(’T ul)ulF___uluOf _uO T](:;l )Ff/
___(T _ul)qll dlo Q —f—ud_D—f- ulE = 0. (3.6)

ku, l,dx kz

For this to reduce to a self-preserving form, the various coefficients must either
be negligible or maintain constant ratios with variation of z. For values of uy/u,
that are neither small nor very large, the ratios of 7§ —ug, u,(r,—u2) and
uo(To—4}) must remain constant, possible only if ug/%, is invariant, which is
inconsistent with variation of /; and equation (2.13). It appears then that self-
preserving development is possible only if
(A)  |up/u,| is small with 7o— u? = 2u,u, and u3 = wlu,,

or (B) wuy> u, with 74 = u} and ug = u,.

The perturbation flows fall in group A and the boundary-layer type flow in
group B (see figure 1).
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While only the two extreme kinds of flow can remain strictly self-preserving
over large ranges of z, flows with moderate values of u,/u, can satisfy the eriterion
for self-preserving development over fetches long enough for the flow to attain
a moving equilibrium. The reason is that the downstream variation of u, is very
slow if logly/z, is large. For example, with logl,/z, about ten, u, decreases by
about one-fifth while /; (and z) increases by a factor of ten. The ‘settling-down’

I Boundary-layer-type flow Perturbation-type flow l
TO»”% '70—u%‘<<u% i
I |
© I
| I
I |
| I \
0 . " 0 ]
0 % T To To 0 i 70Ty
Shear stress Shear stress
Boundary-layer-type flow / Pertulrbatiogl-typze flow /
To»u /V To — uy| KH) /V
1 1
/ /
. /
n
o /
/
/ 7
/ /
0 i /
0 1

Mean velocity V

Mean velocity V

F1eure 1. Velocity and stress distributions for a boundary-layer type flow and for
a perturbation-type flow. (The distributions are schematic.)

time of a turbulent flow is comparable with the turbulent energy divided by the
rate of energy dissipation which is about I,/u,. In this time, the parcel of turbu-
lence is swept a distance of about ly/klogl,/z,, which, by equation (3.4} is com-
parable with x. It is therefore likely that the turbulent flow is always near the
moving equilibrium appropriate to the current value of uy/u; and that the flow is
locally self-preserving. Over extensive ranges of x, the nature of the moving
equilibrium changes and with it the form of the distribution functions, but they
change so slowly that, at least to the first order, the variation can be neglected.
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4. Development of the modified flow

In the previous section it was argued that the development is very nearly self-
preserving although the forms of the distribution functions depend on the value
of uy/u, and are not strictly invariant during development. Then the modifica-
tions of mean velocity and Reynolds stress are described by the downstream
variation of the scale length /; and by the form of the velocity distribution func-
tion f(5). To a first-order approximation, the downstream variation of I, may be
found by integrating the development equation (3.4), using the value of 1, appro-
priate to the current value of uy/u,. However, we have not yet defined /, precisely
and are free to choose it so that I, = 1 for all values of uyfu,, i.e. to put

o = —u%f: V(z)de (4.1)

with an obvious gain of convenience. Neglecting terms of order (logly/z,)2, I, is

related to x by log ly/zy(log ly/zy— M)
1 Jogly/zy(log = bz —a,)
0 2loglyfze— M v

(4.2)

where z, is an effective origin of the modified flow.

For the purpose of predicting flow changes when logl,/z, is only moderately
large, it is desirable to have a better approximation for /, than equation (4.2). If
P, is the additional momentum flux in the modified flow, overall conservation of
momentum requires that AP Jdz = ui—1,

Omitting terms of order Mu3ly(log l,/2,)~2, it can be shown (see Townsend 1965a)
that

B, = P loglsy—=Co) [ "z [ (7@
0 0

and so, substituting V = (uy/k) f(z/1,),

_ Muilylogly/zy— M —C, MI, ]
B = o~ * gl 7 (+:3)
where I, = f m(f(ﬂ))“’dn-
0

The quantities C, C, and I, depend on the current value of u,/u, and, to some
extent, on the current value of log/y/z,, but they do not affect the leading terms
of P, and the effect of their variations on the magnitude of dP,/dx is of order
Mul(dly/dx) (log I,/2,) 2. Then

dP,  Muidl,floglyfze—M—Cy MO +1) ]
de  k® dx | logly/zo—C+1 ' (loglyjzy—C+1)2]

(4.4)
From (2.6),
2 _ 2 log (ly/zg) — M —Cy+ 1
=T =M [2 {Jog (o) — O+ 1} {loglofze) — 3Gy}
Y, logly/zg— M —Cy+2 ]
{log(lo/z,) — C + 1} {log (ly/2) — M — Cy}
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and we obtain the development equation,

52— d_lo [{1Og(l0/z0)— C+1}H{log (ly/2g) — M — Co} + M(1 + 1)
dx 2{log (ly/ze)—C +1}— M

1 $M*
2+<2log(lo/zo)—M)2] (45)

which may be integrated to

k?(x — ) — {log (lo/zy) — C +1}{log (Iy/z9) — M — Cy} + M (1 + L) _
ly 2{log (lo/zg) —C +1}— M

1. (4.6)

The omitted terms are less in a ratio of order (log,/z,)~2 than those retained.
In the two limiting flows, the development equation takes simple forms. For
small ratios of the friction velocities, it becomes (compare Townsend 1965b)

k¥ (x — ) [ly = }{log (/) — 3 M — Cy— 2} (4.7)
valid for | M| < logly/z,, while for large positive ratios, i.e. —M > logly/z,, it is
k2(x — 20) [Ty = log (lo/29) — C — 1 — L, + (log ly/20)?| M. (4.8)

As defined, the depth of the modified layer is seen to be nearly twice as large at
a given fetch in the perturbation flow as in the boundary-layer type flow. This

Velocity profile C C, I, Om/ly
Boundary layer —0-60 1-5 2-9 0-55
Elliott 0 2 2 0-90
Panofsky-Townsend 0-31 1-81 1-67 1-22

TasrEe 1. Characteristics of velocity distribution functions

conclusion takes no account of possible changes in shape of the velocity distribu-
tion function f(7), whose form is known with confidence only for the boundary
layer. Some measurements are collected in Townsend (1956) and, in terms of the
scale thickness used there, & = z,exp (kU,/u,) in the present notation,

I, = 0-558/l, = 1.

Figure 2 shows the form of the velocity distribution function and it can be seen
that the limit of observable velocity change lies near z = 0-55[,. The values of the
parameters, C, C; and I,, are given in table 1.

Observations of the velocity changes have been made by several workers
(Lettau et al. 1962; Rider, Philip & Bradley 1963; Bradley 1965) in the atmo-
spheric boundary layer, mostly for moderate values of uy/u, near 0-7. The
accuracy of the observations is hardly sufficient to do more than indicate the
general form of f(y) and the following reasoning may be as good a guide to the
form as the observations. An essential difference between the perturbation flows
with small ug/u, and the boundary-layer flows is that, in the first kind, the
ambient flow is already turbulent and able to convect turbulent energy in the
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Fraure 2. Comparison of profile shapes as observed in boundary layers and as postulated
by Elliott and by Panofsky & Townsend, (a) with a linear height scale, and (b) with a
logarithmic height scale. , Boundary-layer profile; ——, Elliott (logarithmic) profile;
—-—-—, Panofsky—Townsend (log-linear) profile.
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lateral direction. The other processes represented in the energy equation, produc-
tion, dissipation and advection of turbulent energy, are qualitatively similar in
both kinds of flow and it may be expected that the change in form of the velocity
distribution function is, for the most part, a response to the change of magnitude
of lateral convection of turbulent energy. Common sense, reinforced perhaps by
theoretical models of the kind used to discuss the perturbation flow (Townsend
1965a), is enough to show that added lateral convection leads to a relatively
increased spread of the flow modification, and so that the depth of the modified
region, expressed as a fraction of [, becomes less as u,/u, increases. For small
values of u,/u,, it is likely that the distribution function is close to the logarithmic
form, proposed by Elliott (1958),

f@)=logy for 7 <1
=0 for 3>1,

although the Panofsky & Townsend (1964) form,

fn) =logdn+(1—4n) for n$<2
=0 for 7> 2.

is possible. Table 1 gives values of C, C, and I, for these profiles, and also the
total effective thickness of the modified layer §,,, defined as the height at which
the velocity change is }u,.

In view of the uncertainty in the basic velocity distribution, it may be useful
to have a summary of the consequent uncertainty in prediction of stress and
depth of the modified layer. The following estimates refer to fetches such that
log 1y/(z,24)% = log l,/z,— 4 M is near six.

(i) For a given logl,/(2,2,)%, the predicted scale height I, varies over a range of
6 9/, depending on the assumed profile.

(ii) The effective depth of the modified layer, i.e. §,, as defined above, is about
one-half of I; for large negative M, but may be nearly equal to [, for small or
positive values of M,

(iii) The fractional increase in friction velocity, %,/ %,, depends on the assumed
profile and has a consequent uncertainty of about 10 %,

5. Concluding remarks

The conclusion to be drawn from the analysis is that the flow modification
induced by a change of roughness can be self-preserving in form over fetches
long compared with the adjustment length of the flow. For changes of friction
velocity that are not small, the dynamics of the self-preserving flow change
slowly with fetch and cause slow changes in the distribution functions for
velocity and stress, but the flow will always be very near the hypothetical self-
preserving state appropriate to the current value of the stress-ratio if the change
of flow velocity is small over most of the modified layer. The condition for this is
that both logl,/z, and log!,/2, are moderately large. Since measurements are
usually made at heights greater than the physical height of the roughness
elements (which are perhaps twenty times as large as the roughness length), the
condition is satisfied for any value of M, the change of roughness parameter.
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The predictions are to some extent dependent on the forms of the distribution
functions, but the available observations are not of sufficient accuracy to
determine the variation of form with stress-ratio.
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